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ABSTRAK

Tujuan kertas kerja ini adalah untuk menyiasat sifat-sifat bermusim siri harga saham mengikut
sektor di Bursa Saham Kuala Lumpur (KLSE) untuk jangkamasa 1978:1 hingga 1992:3. Keputusan
kajian mencadangkan bahawa indeks-indeks harga saham di KLSE mempamerkan punca satu
bermusim, bukan sahaja pada frekuensi sifar tetapi dalam kebanyakkan kes pada frekuensi dua
kali setahun. Hasil kajian yang mencadangkan harga saham mempamerkan integrasi bermusim
memberi implikasi penting terhadap kointegrasi bermusim. Walau bagaimana pun keputusan-
keputusan ujian kointegrasi bermusim mencadangkan bahawa indeks-indeks harga saham mengikut
sektor di KLSE tidak berkointegrasi bermusim. Keputusan ini menyarankan bahawa hipotesis
kecekapan bermaklumat pasaran saham tidak boleh di tolak untuk KLSE.

ABSTRACT

The purpose of this paper is to investigate the seasonal properties of the sectoral stock price series
at the Kuala Lumpur Stock Exchange (KLSE) for the period 1978:1 to 1992:3. Our results suggest
that the stock price indices at the KLSE exhibit seasonal unit roots, not only at the zero frequency,
but in most cases at the biannual frequency. The finding that stock price indices exhibit seasonal
integration has important implications for seasonal cointegration. However, our seasonal
cointegration test results suggest that sectoral stock price indices at the KLSE are not seasonally
cointegrated. These results imply that the informationally efficient stock market hypothesis
cannot be rejected for the KLSE.

INTRODUCTION

The concept of cointegration first introduced by
Granger (1981) relates to the notion of a long
run or equilibrium relationship among two or
more variables. Granger points out that the
series may be unequal in the short run but they
are tied together in the long run, that is, they
move parallel to each other over time.
According to Granger (1986) and Engle and
Granger (1987), a very important consequence
of cointegrated variables is that one variable
can be used to predict the other. Granger
(1986) notes that, "if xt, yt are 1(1) and co-
integrated, there must be Granger causality in
at least one direction as one variable can help
forecast the other.**

The method of cointegration is a very useful
tool in economics, particularly in searching for
long-run relationships between various economic
variables. Some real world examples were given
by Granger (1986). He states that, "such variables
are interest rates on assets of different maturities,
prices of a commodity in different parts of the
country, income and expenditure by local
government and the value of sales and
production costs of an industry. Other possible
examples would be prices and wages, imports
and exports, market prices of substitute
commodities, money supply and prices and spot
and future prices of a commodity.**

However, before we test for cointegration
among variables, we need to know the stationarity
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status of the series. In empirical work, we only
deal with stationary series. A non-stationary
variable contains a unit root. It has neither fixed
mean nor a constant variance. A non-stationary
variable such as a random walk will not fluctuate
about a certain mean. On the other hand, a
stationary variable has a fixed mean and a
constant variance. When plotted over time, a
stationary variable is characterised by numerous
fluctuations about the mean. For example, white
noise is a stationary process, and such does not
contain a unit root.

In cointegration analysis, it is important that
the series under study have the same order of
integration. Series Xt and Y are integrated of
the same order, denoted by Xt~I(d) and Y~I(d),
if the two time series required to be differenced
d times to achieve stationarity. A series Xt~I(l),
that is integrated of order one, needs to be
differenced only once to achieve stationarity,
that is, to become 1(0). According to Granger
(1986), 'an 1(0) series has a mean and there is
a tendency for the series to return to the mean,
so that it tends to fluctuate around the mean,
crossing the value frequently and with rare
extensive excursions.'

Inspired by the seminal work of Nelson and
Plosser (1982), there is a vast literature that
investigates on whether macroeconomic time
series contain a unit root. Among others, studies
by Schwert (1987), Wasserfallen (1986) and
Vujosevic (1992) conclude that many
macroeconomic time series contain a unit root.
The finding that many economic time series have
a unit root (i.e. are nonstationary in their levels)
led to the concept of cointegration suggested by
Granger (1981). Furthermore, the existence of
cointegration among these nonstationary
economic time series provides a statistical
foundation for the use of error-correction models.
The notion of integration, cointegration and error-
correction modelling has been extensively tested
and investigated in recent years.

More recently, attention has been directed
to the testing of integration and cointegration
for the presence of seasonality in economic time
series. Previous studies that used high frequency
(monthly and quarterly) data have either ignored
the seasonal components or used seasonal
adjusted data in their analysis. Osborn et al
(1988) and Hylleberg et al (1990) have pointed
out that high frequency economic time series
might also have seasonal unit roots besides the

unit root at zero frequency. Despite this warning,
most researchers avoided the issue of seasonality
in economic time series. Kunst (1994) gives
three reasons for disregarding the role of
seasonality in economic study. Firstly, researchers
assumed that the dummy-style determination
system can appropriately eliminate seasonal
variations in economic time series. Secondly,
researchers regard seasonal phenomena as a
nuisance and as such seasonal adjustment
procedures are used to eliminate them. Thirdly,
the usefulness of findings for seasonal integration
and cointegration for empirical tests and
application has yet to be established.

Nevertheless, the important role of
seasonality in economic time series has been
given serious attention in recent years. Among
the most recent studies include Osborn (1990),
Engle et al (1993), McDougall (1994, 1995),
Linden (1994), Hum (1993), Hylleberg et al
(1993) and Sarantis and Stewart (1993). The
finding of the studies on seasonality in
macroeconomic time series by Osborn (1990)
for the United Kingdom, Otto and Wirjanto
(1990) for Canada, Ghysels et al (1994) for the
United States, McDougall (1995) for New
Zealand and Hylleberg et al (1993) for several
developed countries suggest that many
macroeconomic time series exhibit significant
seasonality. Osborn (1990) concludes that the
finding for seasonal integration in those
economic time series have important implications
for seasonal cointegration.

McDougall (1994) and H u m (1993)
investigate the long-run relationship between
money and income for New Zealand and South
Africa respectively. Although McDougall (1994)
finds a nonseasonal relationship between money
and income for the New Zealand economy, Hum
finds support for the existence of seasonal
cointegration in the South African monetary
data. Hum notes that the inclusion of seasonal
components improves the overall performance
of the final error-correction models. On the
other hand, studies by Linden (1994) on labour
demand in Finnish manufacturing, and Engle et
al (1993) on the Japanese consumption function,
provide evidence in favour of seasonal
cointegration. Nevertheless, Sarantis and Stewart
(1993) found that exchange rates and relative
prices of several developed countries under study
do not support the existence of seasonal
cointegration.
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In a more recent study, Moosa (1995) clearly
indicates the importance of the order of
(seasonal) integration of time series variables.
Moosa finds out that previous studies on
Australian consumption function are mis-
specified and as a result performed poorly as
expected. Moosa (1995) concludes that, "the
failure of these equations is due to the use of
inappropriate filters (by overlooking the time
series properties of the variables) and faulty
error correction terms (by only allowing for
cointegration at the zero frequency or the long
run and not at other frequencies). A finding of
this study is that Australian non-durable
consumption and disposable income are
cointegrated at the frequency 1/4 (annual cycle),
implying that the consumption-income
relationship should be modelled as a seasonal
error correction model."

Despite the increasing interest in testing for
seasonality in macroeconomic series among
researchers, most of the existing studies, except
for Hum (1993), are mainly confined to the
developed nation. Therefore, there is an
imperative need to conduct a similar study to
investigate the seasonal behaviour of
macroeconomic time series of the developing
economies. Thus, the primary aim of the paper
is to complement the existing literature of testing
for seasonality in macroeconomic time series of
the developing countries.

METHODOLOGY
The importance of seasonality in economic time
series has been recognised and has been given
proper treatment in economic literature. The
work of Box and Jenkins (1970) implicitly assumes
that there are seasonal unit roots in the series by
using the seasonal differencing filter. Other
researchers prefer using seasonally adjusted data
in the analysis. However, these approaches have
been criticised by Miron (1992) and Ghysels (1988,
1990, 1992). They pointed out that seasonal
adjustment might lead to wrong inference about
economic relationships between the series under
study. The seasonal adjustment biases the outcome
toward accepting the null hypothesis that a unit
root exists. Olekalns (1994) concludes that, 'tests
of the unit root hypothesis should not be carried
out with seasonally adjusted data.'

When comparing the performance of a series
between seasonally adjusted and seasonally
unadjusted data, Ghysels (1990, 1992) found

that the nature of unit root between the
seasonally adjusted and seasonally unadjusted
series gave contradictory results. Ghysels
concludes that the seasonal adjustment
procedure might alter the outcome of the
conventional test and therefore gave substantially
different results. On the other hand, Miron
(1992) points out that seasonal fluctuations are
not a nuisance, instead seasonality has economic
importance in economic analysis and acts as a
source of information in understanding
economic relationships.

Thus, the problems associated with seasonal
adjustment have led to the examination of
seasonal unit roots and hence tests to determine
orders of seasonal integration for economic time
series. The essence of seasonality is that not only
must each of the series be integrated of the
same order but they must be seasonally integrated
of the same order, otherwise the estimates of the
cointegrating equations will be inconsistent. In
other words, the estimates result in a spurious
regression problem (Hylleberg et al 1990).

Testing for Seasonal Unit Roots
For a seasonally unadjusted economic time series,
the concept of integration will include the
possibility of seasonal unit roots. A seasonal
economic time series, Xt, is said to be integrated
of order (d, D), that is X~I(d, D) if the series
is stationary after first period differencing d
times (unit root) and seasonal differencing D
times (seasonal unit root) (see Osborn et ai,
1988).

According to Hylleberg et al (1990) and
Engle et al (1993), for quarterly data, the
seasonal difference operator (1-B4) can be
decomposed into four possible roots in the
generating process as follows:

(1)

In equation (1), the unit roots are 1,-1, i and -
i which correspond to zero frequency, one-half
(1/2) cycle per quarter or two cycles per year in
quarterly data and one fourth (1/4) period
cycle corresponding to one-quarter cycle per
quarter or one cycle per year in quarterly data.
However, the last root , -i, is indistinguishable
from the one at i with quarterly data and
therefore it is treated as the annual cycle.

The testing procedure for seasonal unit root
has been provided by Hasza and Fuller (1982),
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Dickey et al (1984), Osborn et al (1988), Osborn
(1990), Hylleberg et al (1990) and Engle et al
(1993). The latter two seasonal unit root testing
procedures are the most popular among
researchers. Furthermore, Ghysels et al (1994)
found out that Hylleberg et al (1990) (thereafter
HEGY) procedure compares favourably with
other alternative procedures, in particular, with
Dickey et al (1984) tests.

The HEGY (1990) approach consists in
estimating the following regression:

(2)

where yu = (1+B+B2+B3)x, y2t = -(1-B+B2-B3)xt
and y31 * -(1-B2)xt. For quarterly time series data,
deterministic components are added in equation
(2). The test regression now becomes

A4x = ct0 4- a1SDlt + a2SD2t 6t

, •

where ao is a constant, t is a linear time trend
and SD.t's are quarterly seasonal dummy variables.
The test for seasonal unit roots is by running
ordinary least square (OLS) on equation (3)
and the test statistics on rc's can be used for
inferences. According to a simulation study by
Ghysels et al (1994), the inclusion of a constant
and seasonal dummies appears to be a prudent
decision in testing for seasonal unit roots. Ghysels
et al (1994) further conclude that, "it was found
that when the data-generating processes have
seasonal dummies, the regression without
seasonal dummies seriously distorts the test result
[i.e. it leads to a large bias in the size or too low
power]. Hence, although inclusion of too many
lags or irrelevant deterministic terms (i.e. a
constant, seasonal dummies, and/or a trend)
tends to reduce the power of the tests, the safe
strategy in empirical applications is the inclusion
of these (possibly irrelevant) terms in the model."

To test for a unit root at zero frequency (i.e.
xt~I0(l) we simply perform a t-test on nx = 0. To
test for root -1 (the biannual frequency unit
root) that is, xt~I1/2(l), a test on 7l2=0 is
performed. For the complex roots (an annual
frequency unit root) or xt~I1/4(l), we can perform
either a joint /^test of tts=7i4=0, or two sequential
t-tests of 7C4=O and then 7C3=0. For a series to
contain no seasonal unit roots, 7C2=0 and the

joint /^test of 7ls=7t4=O must both be rejected. On
the other hand, for a series to be stationary, it
must have no unit roots, hence, it must be
established that each of the t-test of 7C,=7C2=0 and
the joint Ftest of 7ts=ft4=0 are rejected. The critical
values can be found in Hylleberg et al (1990).

In equation (3), the choice of the truncation
lag parameter, p, can be determined according
to a variety of lag selection criteria. Engle et al
(1993) pointed out that the power and size of
the unit root tests depend critically on the 'right'
augmentation being used. Too many parameters
will decrease the power of the tests while too few
will render the size far greater than the level of
significance. Engle et al (1993) rely on the
augmentation approach by estimating equation
(3) for some lag length. After establishing which
of the lags are statistically significant, the equation
is then re-estimated by including only the
statistically significant autoregressive terms. The
net result is to leave gaps or 'holes' in the lag
distribution of the autoregressive terms in
equation (3). Ghysels et al (1994) used Hall's
'data-based model-selection' procedure consisting
in estimating the number of autoregressive terms
according to the longest lag with a statistically
significant coefficient, beginning with a
maximum lag length of 7 quarters. A general-to-
specific approach used by McDougall (1994),
which was based on Perron (1989), consists in
starting with a given number of arbitrary
maximum lagged regressors, say k, and then
successively reduced until the last included lag
has significant coefficient based on the usual t-
test. On one hand, Lee and Siklos (1991) used
the well known Akaike and Schwarz criteria, and
on the other, Otto and Wirjanto (1990) and
Osborn (1990) based their analysis on the
significance of the Lagrange Multiplier test for
serial correlation to choose the 'best' model for
each series. Yet others have employed the
Akaike's (1969) Final Prediction Error (FPE)
criterion in selecting the optimal lag length.
Hsiao (1981) points out that the FPE criterion is
equivalent to using an /kest but with a varying
level of significance. As Judge et al (1982) argued,
the intuition behind this procedure is that as
the lag length on the variable under
consideration increases, the first term of FPE
increases while the second term decreases and
as a result, these opposing forces are balanced
when their product reaches a minimum.
Furthermore, according to Hsiao (1979), 'the
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criterion tries to balance the risk resulting from
the bias when a lower order is selected and the
risk resulting from the increase of variance when
a higher order is selected by choosing the
specification that gives the smallest FPE.'

Seasonal Cointegration and Error Correction Model
According to HEGY (1990), 'a pair of series
each of which is integrated at frequency (0 are
said to be cointegrated at that frequency if a
linear combination of the series is not integrated
at (0.* For a two-variable case consisting of X and
Y, where yt and xt~Im(l), co =0, 1/4, 1/2, 3/4,
there may exist one or no cointegrating vector
at each frequency. The general form of the
error-correcting mechanism which allows for
cointegration (at one cointegrating vector) at all
frequencies, CO =0, 1/4, 1/2, 3/4, is shown to be

+ Y2v,.,+ Y,w,,, (4)

where u1"1, vt,, wt2 and wt_3 are lagged residuals of
the following respective cointegrating equations
(5), (6) and (7), derived by Engle et al (1993),

u, t • y.t -
 a , x . t ' <5)

vh = y2t - ct2x2t (6)

W - V - f l Y - CLX (1\
W l t " /St U3X3t U4X3M \')

where in each case the xil and y.( (i=l,2,3) represent
the zero, biannual and annual frequencies which
are run with or without deterministic components
including an intercept (I), seasonal dummies
(SD's) and a time trend (T).

The residuals u, v and w are tested for their
stationarity characteristics according to the
following manner outlined by Engle et al (1993).
The test for noncointegration at the zero
frequency can be performed by establishing the
following equation

Au( = 7C,utl -i- ]£ SjAu,,

+ deterministic components + Th (8)

When testing for noncointegration at the
biannual frequency (i.e. 1/2), we run the
following auxiliary regression

+ deterministic components + x2t (9)

Similarly to the above tests, the test for seasonal
noncointegration at the annual frequency (i.e.
1/4 and 3/4) can be performed by estimating
the following equation:

-I- deterministic components + t^ (10)

The t-values of the test statistics of fl's can be
used for inference for noncointegration at zero,
biannual and annual frequencies. However, for
testing for noncointegration at the annual
frequency, the F-value of the joint test K=K4=0 is
computed together with the t-values for 71̂ =0
and 7C4=O. The critical values for 7t, and K2 are
tabulated in Engle and Yoo (1987). On the
other hand, the critical value for F-statistic for
7C3nrc4=0 are tabulated in Engle et al (1993).

Description and Sources of Data Used
In this paper, the testing for seasonal integration
and cointegration is applied to sectoral stock
prices at the KLSE for the period 1978:1 to
1992:3. The stock price indices are the
Composite, Industrial, Finance, Property,
Agriculture and Tin. The stock price indices
were collected from various issues of the Invest< m
Digest published monthly by KLSE. All data
used in the analysis are transformed into natural
logarithms before estimation.

DISCUSSION ON EMPIRICAL RESULTS
Results of Seasonal Unit Root 7>s/s

The results of applying the HEGY test for seasonal
unit roots are presented in Table 1. Based on
equation (3), each of the variables in the
logarithmic form is then regressed against (i)
without the deterministic components, (ii) a
constant, (iii) a constant and seasonal dummies,
(iv) a constant and trend, and (v) with a constant,
seasonal dummies and trend. In Table 1, we
report the final specification of equation (3)
which was based on the chosen optimal lag
length. The optimal lag length, p, was
determined using the Perron's (1989) liberal
approach which consists in starting with a
given number of lagged dependent variables
and paring down the model by the usual t-
statistics. If the t-statistics on the last lagged
term is less than 1.6, the term is dropped from
the model. The process is repeated until the t-
statistics on the last lagged coefficient is greater
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TABLE 1
HEGY tests for seasonal unit roots

Variables
Deterministic
components Lag LM(4)

Significance of deterministic
components

I SD Tr

Frequencies with a
unit root

j
X

i
o

Composite

Industrial

Finance

Property

Agriculture

Tin

-
1
I, SD
I, Tr
I, SD, Tr

_

/
/, SD
I, Tr
I, SD, Tr

_
/
/, SD
I Tr
I SD, Tr

_
/
/, SD
I Tr
I SD, Tr

_
/
/, SD
I Tr
I, SD, Tr

_

/
/, SD
I, Tr
I, SD, Tr

0.91
-1.96
-1.84
-1.92
-2.20

1.00
-1.47
-1.37
-2.15
-2.34

1.13
-2.62
0.43
-2.85
-2.51

0.61
-3.25**
-2.50
-3.29
-2.95

0.53
-3.05**
-1.83
-3.32
-3.25

-0.33
-2.40
-2.60
-2.37
-2.48

-3.43**
-3.34**
-3.51**
-2.16**
-2.60

-3.45**
-3.36**
-3.59**
-1.89
-2.54

-3.47**
-2.93**
-2.28
-2.25**
-2.43

-2.51**
-2.14**
-2.24
-2.07**
-2.30

-3.09**
-3.08**
-3.65**
-2.89**
-3.66**

-4.05**
-2.34**
-2.31
-2.34**
-2.29

-3.02**
-3.21**
-3.57
-2.52**
-3.77**

-3.49**
-3.60**
-3.91**
-2.41**
-3.32

-3.35**
-3.13**
-3.81**
-2.84**
-4.33**

-3.37**
-3.08**
-3.87**
-3.10**
-3.97**

-3.35**
-3.70**
-2.60
-3.77**
-3.66**

-2.27**
-2.63**
-4.20**
-2.64**
-4.18**

-3.59**
-3.24**
-3.67**
-0.53
-0.81

-3.01**
-2.80**
-3.23**
-0.62
-0.79

-2.96**
-0.76
-0.61
-0.14
-0.42

-2.11**
0.15
0.36
0.25
0.39

-2.86**
-2.32**
-0.87
-1.90**
-0.90

-1.72
-0.11
-0.13
-0.17
-0.16

11.13**
10.59**
13.27**
3.39**
7.75**

10.75**
10.58**
13.03**
3.18**
6.09

10.12**
10.00**
7.64**
4.08**
9.62**

9.10**
4.76**
7.51**
4.83**
7.90**

9.74**
9.60**
3.70
8.98**
7.46**

4.08**
3.49**
8.92**
3.54**
8.86**

1
1
1
8

12

1
1
1
8

12

1
3

12
8

12

2
5
8
5
8

1
1
9
1
4

3
8

12
8

12

4.12
1.11
2.66
7.54
7.09

5.58
3.36
5.76
4.96
4.94

5.40
1.02
6.01
7.63
6.60

5.98
2.48
2.47
3.93
5.77

5.42
3.49
2.23
4.54
4.08

3.81
5.51
5.70
5.33
7.25

-
**
ns
ns
ns

.

ns
ns
**
**

_
* •

ns
• •

* *

• *

* *

* *

• *

ns
**
**

.
**
**
**
**

-
-
-

ns
**

-

**
• *

-

* *

* *

_

-

-

ns
ns

-
-
-

ns
**

_

-
ns
ns

0
0
0
0
0, 1/2

0
0
0
0, 1/2
0, 1/2, 1/4

0
0
0, 1/2
0
0, 1/2

0
stationary
0, 1/2
0
0, 1/2

0
stationary
0, 1/4
0
0

0
0
0, 1/2
0
0, 1/2

1
§•
X

1
1
f1

Notes; The LM Chi-Square statistics for serial correlation with 4 lags is 9.48 with 4 degree of freedom (5%). ns denotes not significant. Asterisk, •*, denotes statistically significant at five percent
level. Critical values for 48 observations and at 5 percent significance level are as follows (see Hylleberg et aL 1990):

Deterministic components

I
I, SD
I, Tr
I, SD, Tr

-1.95
-2.96
-3.08
-3.56
-3.71

-1.95
-1.95
-3.04
-1.91
-3.08

-1.93
-1.90
-3.61
-1.92
-3.66

W 4

-176/1.72
-1.72/1.68
-1.98/1.96
-1.70/1.64
-1.91/1.97

3.26
3.04
6.60
2.95
6.55
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than 1.6. A series of autoregressions is
estimated for equation (3) by varying the lag
order p from 1 to 12. For each lag length
chosen, the presence of serial correlation in
the residuals is checked using the Breusch-
Godfrey LM test for fourth-order
autoregression1. All final equations estimated
show that the null hypothesis of no serial
correlation can be rejected at 5 percent
significance level.

Several observations can be derived from
the results presented in Table 1. First, most of
the final specifications indicate a shorter lag
length. The evidence is stronger for Agriculture
and followed by Composite and Industrial
sectors. Secondly, in majority of the cases, the
HEGY tests are not robust to the inclusion of
deterministic components in the equation. For
Composite stock price, except one, the results
overwhelmingly indicate that seasonal unit roots
cannot be rejected at the zero frequency. When
a constant, seasonal dummies and trend were
included in the equation, the results suggested
that seasonal unit roots could not be rejected
at frequency zero and 1/2 for the Composite
stock price. In the cases of Finance and Tin
sectors, the results suggested that seasonal unit
roots could not be rejected at frequency zero
and biannual when a constant and seasonal
dummies or all three deterministic components
were included in equation (3). Similar results
were also obtained for the Property sector
except one, in that, an equation with a constant,
the HEGY test suggest that Property stock price
is stationary in levels. The HEGY test also
suggested that Agriculture stock price is
stationary in levels when a constant is included
in equation (3). However, when a constant and
seasonal dummies were included in the
equation, the results suggested that seasonal
unit root could not be rejected at frequency
zero and 1/4. Last but not least, in case of
Industrial stock price, results suggest that seasonal
unit roots cannot be rejected at all frequencies
(i.e. 0, 1/2 and 1/4) when a constant, seasonal
dummies and trend are included; at frequencies
zero and 1/2 when a constant and trend are
included; and at frequency zero when either a
constant or a constant and seasonal dummies

or no deterministic components are included in
the model.

Since the HEGY test is sensitive to the
inclusion of deterministic components, our
question is: How do we select the appropriate
HEGY regression equation? In this paper, we
do this by infering at the significance of the
deterministic components. The appropriate
HEGY regression equation selected is the one
with the most significance deterministic
components. Based on this criterion, the
appropriate HEGY regression equation for
Composite stock price is the one which
includes a constant, seasonal dummies and a
trend; Industrial with a constant and a trend;
Finance with all three deterministic
components; Property with a constant and
seasonal dummies; Agriculture with a constant,
seasonal dummies and trend; and Tin with a
constant and seasonal dummies. Based on these
results, we conclude that seasonal unit roots at
zero and biannual frequencies are suggested
for all stock price indices, except for
Agriculture stock price where seasonal unit
root at zero frequency is suggested.

Results of Seasonal Cointegration Tests
The results of the above unit root tests indicate
that stock price series are integrated of order
one but at some specific frequencies. Having
established that the stock price indices are
seasonally integrated, our next attempt is to
investigate whether these stock price series are
seasonally cointegrated along the lines suggested
by Engle et al. (1993). In our case, in the quarterly
series, cointegration between sectoral stock price
integrated at the biannual frequency is said to
exist if there is at least one linear combination
of the series that is stationary at that frequency.
For the annual frequency case, cointegration is
said to exist if there is at least one linear
combination of the series, all integrated at the
annual frequency and the series lagged one
quarter which is stationary at that particular
frequency.

Following Engle and Granger's (1987) two-
step procedure, the test for seasonal
noncointegration at a particular frequency is
based on a test for a unit root at that frequency

1 According to Harvey (1985), the LM principle for testing for serial correlation yields more satisfactory test compared
to the Box-Ljung test.
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in the residuals from a first step regression. The
first step regression is a regression of one of the
series on the other, but after proper
transformations so that no unit roots exist at
other frequencies. As mentioned earlier, a test
of noncointegration at the long-run frequency is
a test for a unit root at the zero frequency in the
residuals, û , from a regression yIt on x,t where ylt

is (1+B+B2+B*)yt, that is the sum of four
consecutive values of say, Industrial stock price
scries while xlt is defined analogously for say,
Finance stock price series. Likewise, a test of
noncointegration at the biannual frequency is
a test of there being a unit root at that frequency
in the residuals, Vt, from a regression of y2( = -
(1-B+B2-B*)yt on xj = -(1-B+B*-B3)x(. And for the
annual frequency the first step regression is ŷ t

= -(1-B2)y( on x3t = -(1-B2)xt and x5M and the test
for a unit root at the annual frequency in the
residuals wt is based on the F-value for 7ts=7t4=O
in the regression (wt+wi2) = 7Ĉ (-wt9) + 7t4(-wtl).
In testing for cointegration, we allow for
augmentation of the lagged dependent variable
so as to induce white noise following Perron's
(1989) liberal approach mentioned earlier.

Seasonal cointegration is usually conducted
between those series which appeared to be
seasonally integrated at common frequencies.

In our case, we conducted a pairwise seasonal
cointegration at the long-run between Industrial,
Finance, Property, Agriculture and Tin. On the
other hand, seasonal cointegration at the
biannual frequency is conducted between
Industrial, Finance, Property and Tin. The
results of testing for seasonal cointegration at
the long-run and biannual frequencies are
presented in Tables 2 and 3 respectively.
Looking through Table 2, the results suggest
that sectoral stock prices at the KLSE are not
cointegrated at the zero frequency. The t-
statistics for 7C1 in all cases are smaller (in
absolute term) than the critical value tabulated
in Engle and Yoo (1987). On the other hand,
results in Table 3 also suggest that cointegration
at the biannual frequency can also be rejected
between the sectoral stock prices at the KLSE.
In all cases the t-statistics for n2 are smaller (in
absolute term) than the critical value tabulated
in Engle and Yoo (1987).

CONCLUSION

More recently, the work of Hylleberg et al. (1990)
and Engle et al (1993) has enabled researchers
to investigate the time series properties of an
economic series when they contain seasonal
components not only at the zero frequency but

TABLE 2
Tests for cointegration at frequency zero: the long-run

Regressand Regressor Cointegrating regression

Industrial

Finance

Property

Agriculture

Finance
Property
Agriculture
Tin

Property
Agriculture
Tin

Agriculture
Tin
Tin

Coefficient
on regressor

0.507
0.383
0.704
0.769

0.548
1.226
0.422

1.981
1.089
0.360

R2

0.829
0.894
0.817
0.961

0.966
0.913
0.775

0.737
0.605
0.691

D.W.

0.07
0.09
0.08
0.19

0.09
0.12
0.05

0.11
0.05
0.09

Tests for unit roots in residuals

Augmented Dickey-Fuller test
Lag LM(4)

-1.86
-1.55
-1.31
-3.19

-2.11
-1.72
-2.24

-1.71
-0.87
-1.00

5
5
5

10

5
9
5

9
11
8

2.21
1.79
5.67
2.59

3.46
2.94
3.14

6.92
3.16
4.28

Notes: The t-statistics for TC, isdistributed as described in Engle and Granger (1987) and Engle and Yoo (1987). The
critical value at five percent significance level is 3.29 for T equals 50 observations. The LM Chi-Square statistics for serial
correlation with four lags is 9.48 with four degree of freedom (5%). All cointegrating regressions and the auxiliary
regressions are estimated with a constant and seasonal dummies.
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TABLE 3
Tests for cointegration at frequency 1/2: biannual cycle

Regressand Regressor Cointegrating regression Tests for unit roots in residuals

Industrial

Finance

Property

Finance
Property
Tin

Property
Tin

Tin

Coefficient
on regressor

0.886
0.624
0.729

0.662
0.696

0.938

IP

0.725
0.671
0.648

0.813
0.636

0.622

D.W.

2.67
2.84
2.88

2.52
1.88

1.50

Augmented Dickey-Fuller test
7i2 Lag LM(4)

-1.85
-2.87
-2.44

-3.06
-3.07

-2.21

11
7
4

7
3

11

5.76
4.12
1.85

4.94
6.48

4.99

Notes: The t-statistics for %2 is distributed as described in Engle and Granger (1987) and Engle and Yoo (1987). The
critical value at five percent significance level is 3.29 for T equals 50 observations. The LM Chi-Square statistics for serial
correlation with four lags is 9.48 with four degree of freedom (5%). All cointegrating regressions and the auxiliary
regressions are estimated with a constant and seasonal dummies.

also possibly at the biannual and annual
frequencies. The fact that a time series is
integrated at seasonal frequencies implies that it
possesses long memory properties so that shocks
tend to last permanently and moreover they
tend to alter the seasonal pattern permanently.
The finding that time series exhibit seasonal
unit roots at different frequencies suggest that
some series may be cointegrated at the seasonal
frequencies. Cointegration established at
different frequencies will lead to an interesting
seasonal error correction model. Moosa (1995)
points out that an error correction model will be
misspecified if cointegration at the seasonal
frequencies is present but is not accounted for.

In this paper we have endeavoured to
investigate the seasonal properties of sectoral
stock price indices at the KLSE, by applying the
recent technique of seasonal unit root test
proposed by Hylleberg et al (1990). In our
analysis, we also conducted the seasonal
cointegration test proposed recently by Engle et
al (1993) to the sectoral stock price data.
Generally, we found that stock price indices at
the KLSE exhibit seasonal unit roots, not only at
the zero frequency, but, in most cases at the
biannual frequency. However, when tested for
seasonal cointegration, our results suggest that
sectoral stock price series are not seasonally
cointegrated either at zero frequency (in the
case of Industrial, Finance, Property, Agriculture
and Tin) or the biannual frequency (in the case
of Industrial, Finance, Property and Tin). An

important implication of this study is that the
informationally efficient stock market hypothesis
cannot be rejected for the Kuala Lumpur Stcok
Exchange for the period under study. This
implies that investors cannot earn abnormal
profit consistently using the returns of sectoral
stock price to predict the returns of other sectoral
stock price at the KLSE.
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